Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Int J Mol Sci ; 23(18)2022 Sep 13.
Article in English | MEDLINE | ID: covidwho-2032988

ABSTRACT

The coronavirus E proteins are small membrane proteins found in the virus envelope of alpha and beta coronaviruses that have a high degree of overlap in their biochemical and functional properties despite minor sequence variations. The SARS-CoV-2 E is a 75-amino acid transmembrane protein capable of acting as an ion channel when assembled in a pentameric fashion. Various studies have found that hexamethylene amiloride (HMA) can inhibit the ion channel activity of the E protein in bilayers and also inhibit viral replication in cultured cells. Here, we use the available structural data in conjunction with homology modelling to build a comprehensive model of the E protein to assess potential binding sites and molecular interactions of HMA derivatives. Furthermore, we employed an iterative cycle of molecular modelling, extensive docking simulations, molecular dynamics and leveraging steered molecular dynamics to better understand the pore characteristics and quantify the affinity of the bound ligands. Results from this work highlight the potential of acylguanidines as blockers of the E protein and guide the development of subsequent small molecule inhibitors.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Amiloride/analogs & derivatives , Amiloride/pharmacology , Amino Acids , Humans , Ion Channels/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation
2.
Commun Biol ; 4(1): 1347, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1852515

ABSTRACT

The dire need for COVID-19 treatments has inspired strategies of repurposing approved drugs. Amantadine has been suggested as a candidate, and cellular as well as clinical studies have indicated beneficial effects of this drug. We demonstrate that amantadine and hexamethylene-amiloride (HMA), but not rimantadine, block the ion channel activity of Protein E from SARS-CoV-2, a conserved viroporin among coronaviruses. These findings agree with their binding to Protein E as evaluated by solution NMR and molecular dynamics simulations. Moreover, we identify two novel viroporins of SARS-CoV-2; ORF7b and ORF10, by showing ion channel activity in a X. laevis oocyte expression system. Notably, amantadine also blocks the ion channel activity of ORF10, thereby providing two ion channel targets in SARS-CoV-2 for amantadine treatment in COVID-19 patients. A screen of known viroporin inhibitors on Protein E, ORF7b, ORF10 and Protein 3a from SARS-CoV-2 revealed inhibition of Protein E and ORF7b by emodin and xanthene, the latter also blocking Protein 3a. This illustrates a general potential of well-known ion channel blockers against SARS-CoV-2 and specifically a dual molecular basis for the promising effects of amantadine in COVID-19 treatment. We therefore propose amantadine as a novel, cheap, readily available and effective way to treat COVID-19.


Subject(s)
Amantadine/pharmacology , Amiloride/analogs & derivatives , Antiviral Agents/pharmacology , Rimantadine/pharmacology , SARS-CoV-2/drug effects , Viral Proteins/physiology , Amiloride/pharmacology , Ion Channels/physiology
3.
Nat Struct Mol Biol ; 27(12): 1202-1208, 2020 12.
Article in English | MEDLINE | ID: covidwho-1387444

ABSTRACT

An essential protein of the SARS-CoV-2 virus, the envelope protein E, forms a homopentameric cation channel that is important for virus pathogenicity. Here we report a 2.1-Å structure and the drug-binding site of E's transmembrane domain (ETM), determined using solid-state NMR spectroscopy. In lipid bilayers that mimic the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) membrane, ETM forms a five-helix bundle surrounding a narrow pore. The protein deviates from the ideal α-helical geometry due to three phenylalanine residues, which stack within each helix and between helices. Together with valine and leucine interdigitation, these cause a dehydrated pore compared with the viroporins of influenza viruses and HIV. Hexamethylene amiloride binds the polar amino-terminal lumen, whereas acidic pH affects the carboxy-terminal conformation. Thus, the N- and C-terminal halves of this bipartite channel may interact with other viral and host proteins semi-independently. The structure sets the stage for designing E inhibitors as antiviral drugs.


Subject(s)
Coronavirus Envelope Proteins/chemistry , Lipid Bilayers/chemistry , SARS-CoV-2/chemistry , Amantadine/chemistry , Amiloride/analogs & derivatives , Amiloride/chemistry , Antiviral Agents/chemistry , Coronavirus Envelope Proteins/genetics , Dimyristoylphosphatidylcholine/chemistry , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy , Models, Molecular , Phenylalanine/chemistry , Phospholipids/chemistry , Protein Conformation , Protein Domains , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL